ЛЕКЦИЯ № 18

Нелинейный параметрический резонанс.

Перейдем к рассмотрению нелинейного параметрического резонанса. Комбинируя уравнение (12.2), описывающее линейный параметрический резонанс и уравнениеДюффинга (16.6) с четверной нелинейностью, получаем простейшую модель, описывающую нелинейный параметрический резонанс:

$$\ddot{x} + \omega_0^2 (1 + h \cos(\omega t)) x + \varepsilon x^3 = 0.$$
(18.1)

(Выбрана «жесткая» нелинейность для сравнения с результатами предыдущей лекции для обычного нелинейного резонанса).

Ограничимся частным случаем одночастотных колебаний у основного параметрического резонанса, которые рассмотри в резонансном приближении. Как и при исследовании линейного резонанса, решение будем искать в виде $x = a_1 \cos(\omega t/2) + a_2 \sin(\omega t/2)$. Вначале рассмотрим одночастотные решения, полагая амплитуды *a* и *b* постоянными. Подставляя такое решение в (18.1) в резонансном приближении получаем систему уравнений

$$\left(\omega_0^2 - \left(\frac{\omega}{2}\right)^2 \pm \frac{\omega_0^2 h}{2}\right) a_{1,2} + \frac{3}{4} \varepsilon a_{1,2} \left(a_1^2 + a_2^2\right) = 0.$$
(18.2)

Она имеет два решения:

$$a_1 = 0, \qquad \omega^2 = (2\omega_0)^2 + 2\omega_0^2 h + 3\varepsilon a_2^2, \qquad (18.3)$$

$$a_2 = 0, \qquad \omega^2 = (2\omega_0)^2 - 2\omega_0^2 h + 3\varepsilon a_1^2.$$
 (18.4)

Таким образом, при фиксированной величине внешнего поля h зависимость частоты колебаний от «мощности» колебаний a^2 выглядит так, как это изображено на Рис.18.1.

Рассмотрим эту проблему в более простой модели для комплексной переменной. Комбинируя уравнение для линейного параметрического резонанса (13.2) и уравнение ангармонического ротатора (или магнитного момента) (16.24), получаем эффективное уравнение для описания нелинейного параметрического резонанса. Опять, для удобства сравнения с результатами для обычного резонанса в уравнении ангармонического осциллятора учтем «жесткую» нелинейность:

$$i\dot{\psi} - \omega_0 \psi - \varepsilon |\psi|^2 \psi - \omega_0 h \overline{\psi} e^{-i\omega t} = 0$$
(18.5)

После перехода во вращающуюся систему отсчета $\psi = \phi \exp(-i\omega t/2)$ получаем уравнение с постоянными коэффициентами:

$$i\dot{\varphi} - (\omega_0 - \omega/2)\varphi - \varepsilon |\varphi|^2 \varphi - \omega_0 h\overline{\varphi} = 0.$$
(18.6)

Представив комплексную переменную φ в виде $\varphi = a \exp(i\delta)$, получаем систему уравнений первого порядка

$$\dot{a} = -\omega_0 h a \sin 2\delta \,, \tag{18.7}$$

$$\dot{\delta} = (\omega/2 - \omega_0) - \varepsilon a^2 - \omega_0 h \cos 2\delta. \qquad (18.8)$$

Стационарным состояниям соответствует $\dot{a} = \dot{\delta} = 0$. При этом мы получаем два состояния с $\delta = 0$ и $\delta = \pi/2$ и с частотными зависимостями

$$\omega_{1,2} = 2\omega_0 + \varepsilon a^2 \pm 2\omega_0 h, \qquad (18.9)$$

изображенными на Рис.18.1 в виде линий ω_{\pm} . Одновременно стационарным состояниям отвечают особые точки на «фазовой» плоскости (a, δ) . Систему (18.7, 18.8) легко исследовать на фазовой плоскости, поскольку она обладает интегралом движения и является полностью интегрируемой. Легко проверить сохранение следующей величины:

$$E = a^2 \left(\omega_0 - \omega/2 + \omega_0 h \cos 2\delta - \varepsilon a^2/2 \right).$$
(18.9)

Рассмотрим трансформацию фазового портрета системы на плоскости (a, δ) при фиксированном значении глубины модуляции *h* и с ростом частоты вдоль линии *AE* гна Рис.18.2. Прежде всего определим особые точки. Из (18.7) следует, что они могут лежать только на прямых линиях a = 0, и $\delta = \pi n/2$. При $\omega < \omega_{-} = 2\omega_{0} - 2\omega_{0}h$ (точка *A* на рисунке) правые части (18.7, 18.8) не зануляются одновременно. Следовательно, особые точки отсутствуют. Характер движения можно оценить при малых амплитудвх *a* и

частотах $\omega \ll 2\omega_0$. При этом из (18.8) следует, что $\dot{\delta} \approx -\omega/2$ и $\delta \approx -\omega t/2$. Заметим, что при этом $\psi = a \exp(-i\omega t/2 + i\delta) = a \exp(-i\omega t)$, т.е. как отмечалось ранее, частица колеблется на частоте внешней силы. Представляя амплитуду в виде $a = \tilde{a} + \mu$, для малых отклонений μ получаем из (18.7) $a = \tilde{a} - (\omega_0 \tilde{a} h/\omega) \cos \omega t = \tilde{a} - (\omega_0 \tilde{a} h/\omega) \cos 2\delta$. Таким образом, восстанавливается фазовый портрет в этой области (Рис.18.3а).

Рис.18.3

В точке *В* на Рис.13.2 возникает особая точка $(a = 0, \delta = \pi/2)$. Этот процесс необычный. Как правило, особые точки рождаются попарно – центр и седло. В данном случае рождается сразу 4 особые точки: два центра и два седла. При малом превышении частотой величины *ω* имеем *a* <<1 и $\delta = \pi/2 + v$ и правая часть (18.8) принимает вид $-\varepsilon a^2 - 2\omega_0 h v^2 + (\omega - \omega_-)/2$. Приравнивая это выражение нулю, получаем эллипс, пересечение которого с дают прямыми a = 0И $\delta = \pi/2$ возникающие особые точки $\left(a_{c} = \pm \sqrt{(\omega - \omega_{-})/2\varepsilon}, \delta_{c} = \pi/2\right) \quad \mathbf{H} \quad \left(a_{s} = 0, \delta_{s} = \pi/2 \pm \nu\right) \quad \mathbf{c} \quad \nu_{s} = \sqrt{(\omega - \omega_{-})/4\omega_{0}h}.$ Линеаризация уравнений (18.7, 18.8) вблизи точек *s* с $a = a_c + \eta$, $\delta = \pi/2 + v$ дает

$$\dot{\eta} = 2\omega_0 a_c h v, \qquad \dot{v} = -2\varepsilon a_c \eta. \qquad (18.10)$$

Т.е. эти точки являются устойчивыми центрами и решения вида $v, \eta \sim \exp(i\Omega t)$ описывают вращение изображающих точек с частотой $\Omega = \sqrt{4\varepsilon \omega_0 a_c^2 h}$. Таим образом, общее решение имеет вид

$$\psi \approx (a_c + \eta_0 \sin \Omega t) \exp(-i\omega t/2 - i\eta_0 \Omega \cos \Omega t/2\omega_0 a_c h), \qquad (18.11)$$

т.е. является двухчастотным с комбинацией частот ω и Ω .

Линеаризация уравнений вблизи двух других точек a = 0, $\delta = \pi/2 + v_s + \xi$ показывает, что эти точки представляют собой неустойчивые седла, описываемые уравнениями

$$\dot{\xi} = -2\omega_0 h \sin 2\nu_s \cdot \xi, \qquad \dot{a} = -\omega_0 h \sin 2\nu_s \cdot a \qquad (18.12)$$

с решениями $\xi \sim \exp(-2\Gamma t)$ и $a \sim \exp(-\Gamma t)$ с $\Gamma = h\omega_0 \sin 2\nu_s$. Фазовый портрет в точке *C* на Рис.18.2 приведен на Рис.18.3b. Точное выражение для координаты седловой точки такое: $\nu_s = \arcsin \sqrt{(\omega - \omega_-)/4\omega_0 h}$, и она с ростом частоты ω и приближении ее к ω_+ стремится к $\pi/2$. При значнии $\omega = \omega_+$ (точка *D* на Рис.18.2) происходит слияние двух седел (Рис.18.3с) и рождение двух новых седел (Рис.18.3d).

Проведенный анализ показывает, что учет нелинейности стабилизирует нелинейный параметрический резонанс и ограничивает эеспоненциальный рост амплитуды при внешнем воздействии. Кроме того, одночастотное стационарное колебаний с частотами ω_{\perp} неустойчиво. Движение осциллятора в условии резонанса представляет собой следующее. При частота, меньших резонансных ($\omega < \omega_{-}$), осциллятор испытывает дополнительное вращение в поля. При направлении вращения внешнего частотах В интервале $(\omega_{-} < \omega < \omega_{+})$, кроме такого движения при определенных резонансных начальных условиях допустимо периодическое колебание момента со своей частотой относительно среднего вращения с частотой, равной половине внешней частоты. Т.е. это – колебания относительно вращения с частотой, близкой к собственной. Наконец, при частотах, больших ω_{-} , коме указанных решений возможны состояния, в которых появляется дополнительное вращение в обратном направлении по отношению к вращению поля (система тормозится при больших скоростях).

Учесть затухание в в условиях нелинейного параметрического резонанса можно, как и в предыдущих задачах, заменой $\omega_0 \rightarrow \omega_0 - i\lambda$. При этом система уравнений (18.7, 18.8) заменится на

$$\dot{a} = -\lambda a - \omega_0 h a \sin 2\delta, \qquad (18.7)$$

$$\dot{\delta} = (\omega/2 - \omega_0) - \varepsilon a^2 - \omega_0 h \cos 2\delta. \qquad (18.8)$$

Рассмотрим, как изменится динамика в области резонанса, т.е. при $\omega_{-} < \omega < \omega_{+}$. (При учете диссипации граничные частоты несколько изменятся и их интервал сузится). Координаты особой точки (с) несколько изменятся:

$$\sin 2\delta_c = -\lambda/\omega_0 h, \qquad 2\varepsilon a_c^2 = \omega - 2\omega_0 - 2\sqrt{(\omega_0 h)^2 - \lambda^2}. \qquad (18.9)$$

Линеаризуя уравнения (18.7, 18.8) вблизи этой точки по малым добавкам $\eta = a - a_c$ и $v = \delta - \delta_0$, получаем при малых значениях затухания вместо (18.10) систему

$$\dot{\eta} = 2\omega_0 a_c h v - \lambda \eta$$
, $\dot{v} = -2\varepsilon a_c \eta - 2\lambda v$. (18.10)

Для решений вида $\eta, \nu \sim \exp(i\Omega t)$ получаем

$$\Omega \approx \sqrt{4\varepsilon a_s^2 \omega_0 h} + i3\lambda/2.$$
 (18.11)

Таким образом, особая точка из центра превращается в устойчивый фокус (Рис.18.4).

Поэтому, если при фиксированной глубине накачки h и частоте внешнего поля ω задать аплитуду колебания, то под влиянием трения амплитуда понизится (или повысится) до значения, определяемого зависимостью ω_{-} (Рис.18.5).